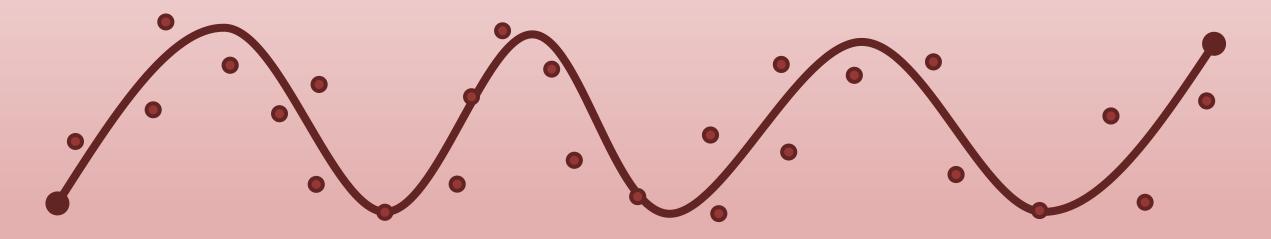
Quick Start Tutorial

Modelling, Simulation and Control in MATLAB

Hans-Petter Halvorsen



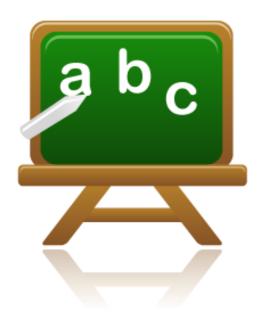
https://www.halvorsen.blog

What is MATLAB?

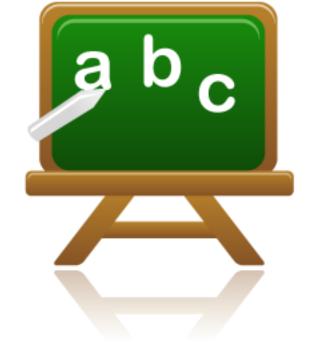
- MATLAB is a tool for technical computing, computation and visualization in an integrated environment.
- MATLAB is an abbreviation for MATrix LABoratory
- It is well suited for Matrix manipulation and problem solving related to Linear Algebra, Modelling, Simulation and Control Applications
- Popular in Universities, Teaching and Research

Lessons

- 1. Solving Differential Equations (ODEs)
- 2. Discrete Systems
- 3. Interpolation/Curve Fitting
- 4. Numerical Differentiation/Integration
- 5. Optimization
- 6. Transfer Functions/State-space Models
- 7. Frequency Response



Lesson 1

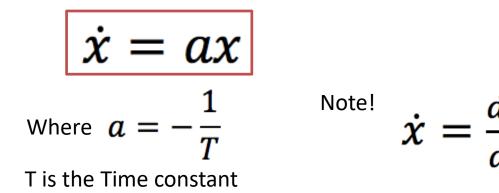


Solving ODEs in MATLAB - Ordinary Differential Equations

$$\ddot{x} = -\frac{k}{m}x - \frac{c}{m}\dot{x} + \frac{1}{m}F$$

Differential Equations

Example:



The Solution can be proved to be (will not be shown here):

$$x(t) = e^{at} x_0$$

T = 5

Use the following:

$$\begin{aligned} x(0) &= 1 \\ 0 &\le t \le 25 \end{aligned}$$

T = 5;a = -1/T;x0 = 1;t = [0:1:25]; $x = \exp(a*t) * x0;$ plot(t,x); grid

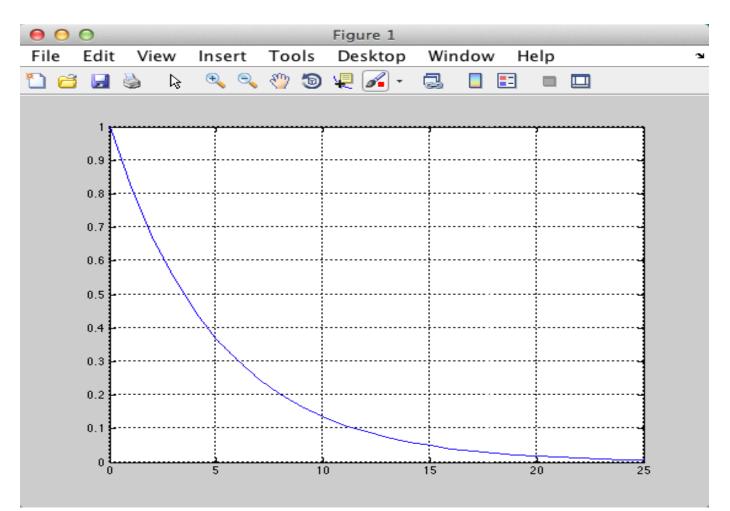
Differential Equations

$$\begin{aligned} x(t) &= e^{at} x_0 \\ T &= 5 \\ x(0) &= 1 \end{aligned}$$
$$\begin{aligned} a &= -\frac{1}{T} \\ 0 &\le t \le 25 \end{aligned}$$

0;

plot(t,x);
grid

Problem with this method: We need to solve the ODE before we can plot it!!

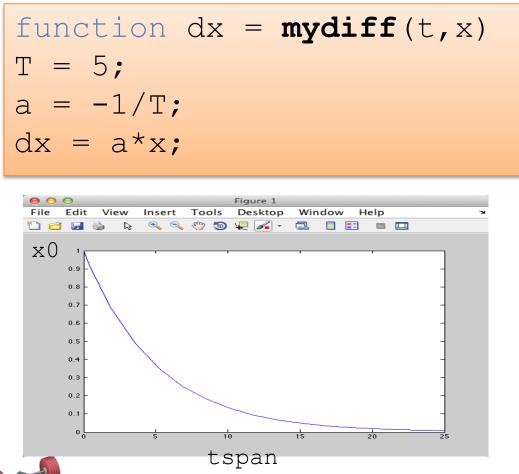


Using ODE Solvers in MATLAB

clear

Example: $\dot{x} = ax$

Step 1: Define the differential equation as a MATLAB function (mydiff.m):



Step 2: Use one of the built-in ODE solver (ode23, ode45, ...) in a Script.

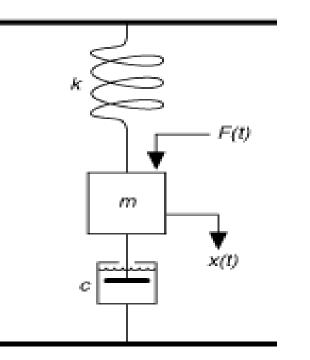
clc
tspan = [0 25];
x0 = 1;

[t,x] = ode23(@mydiff,tspan,x0);
plot(t,x)

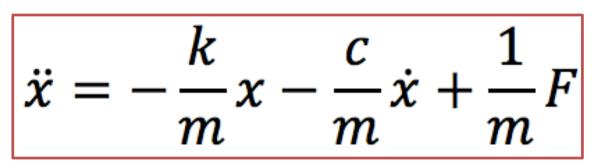
Students: Try this example. Do you get the same result?

Higher Order ODEs

Mass-Spring-Damper System



Example (2.order differential equation):



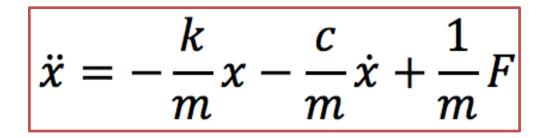
x – position, \dot{x} – speed/velocity, \ddot{x} – acceleration

c - damping constant, m - mass, k - spring constant, F - force

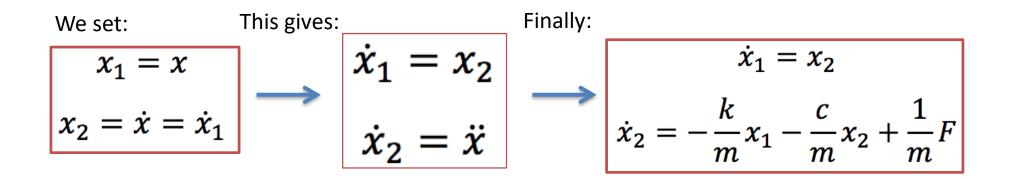
In order to use the ODEs in MATLAB we need reformulate a higher order system into a system of first order differential equations

Higher Order ODEs

Mass-Spring-Damper System:

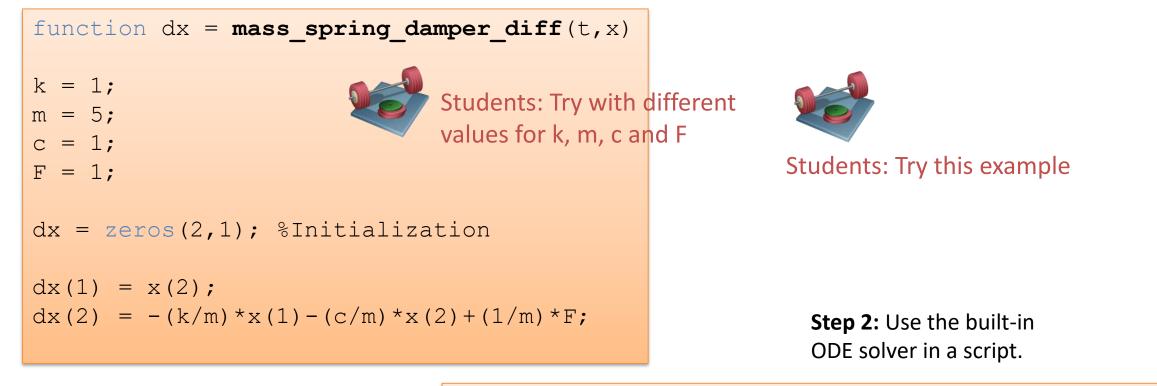


In order to use the ODEs in MATLAB we need reformulate a higher order system into a system of first order differential equations

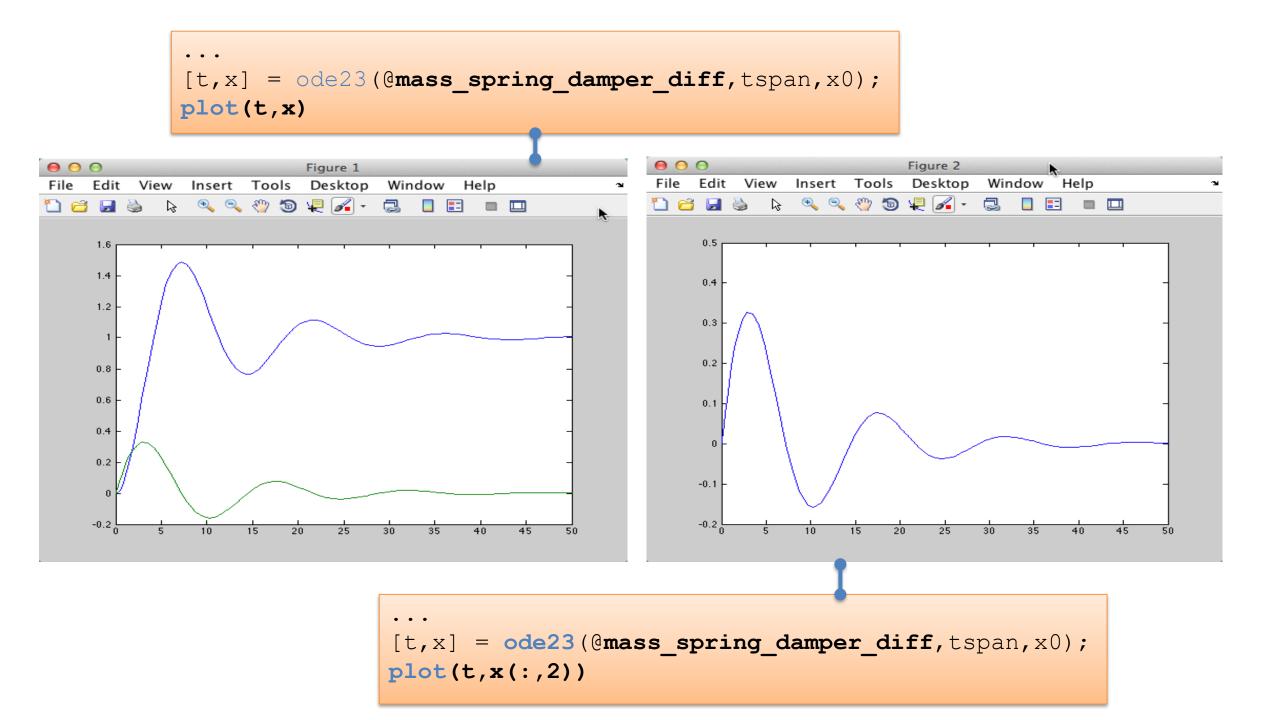


Now we are ready to solve the system using MATLAB

Step 1: Define the differential equation as a MATLAB function
(mass_spring_damper_diff.m):



clear clc	
tspan x0 = [= [0 50]; 0;0];
[t,x] plot(t	<pre>= ode23(@mass_spring_damper_diff,tspan,x0); ,x)</pre>



For greater flexibility we want to be able to change the parameters k, m, c, and F without changing the function, only changing the script. A better approach would be to pass these parameters to the function instead.

Step 1: Define the differential equation as a MATLAB function
(mass_spring_damper_diff.m):

```
function dx = mass spring damper diff(t,x, param)
k = param(1);
m = param(2);
c = param(3);
F = param(4);
dx = zeros(2,1);
dx(1) = x(2);
dx(2) = -(k/m) * x(1) - (c/m) * x(2) + (1/m) * F;
```


Students: Try this example

Step 2: Use the built-in ODE solver in a script:

```
clear
clc
close all
tspan = [0 50];
x0 = [0;0];
k = 1;
m = 5;
c = 1;
F = 1;
param = [k, m, c, F];
[t,x] = ode23(@mass spring damper diff,tspan,x0, [], param);
plot(t,x)
```


Whats next? Learning by Doing!

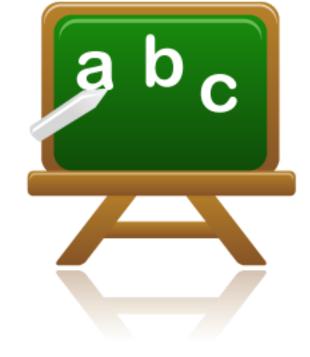
Modelling, Simulation and Control in MATLAB

Hans-Petter Halvorsen

Self-paced Tutorials with lots of Exercises and Video resources

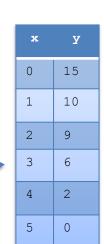
Do as many Exercises as possible! The only way to learn MATLAB is by doing Exercises and hands-on Coding!!!

https://www.halvorsen.blog



$$\dot{x} \approx \frac{x(k+1) - x(k)}{T_s}$$

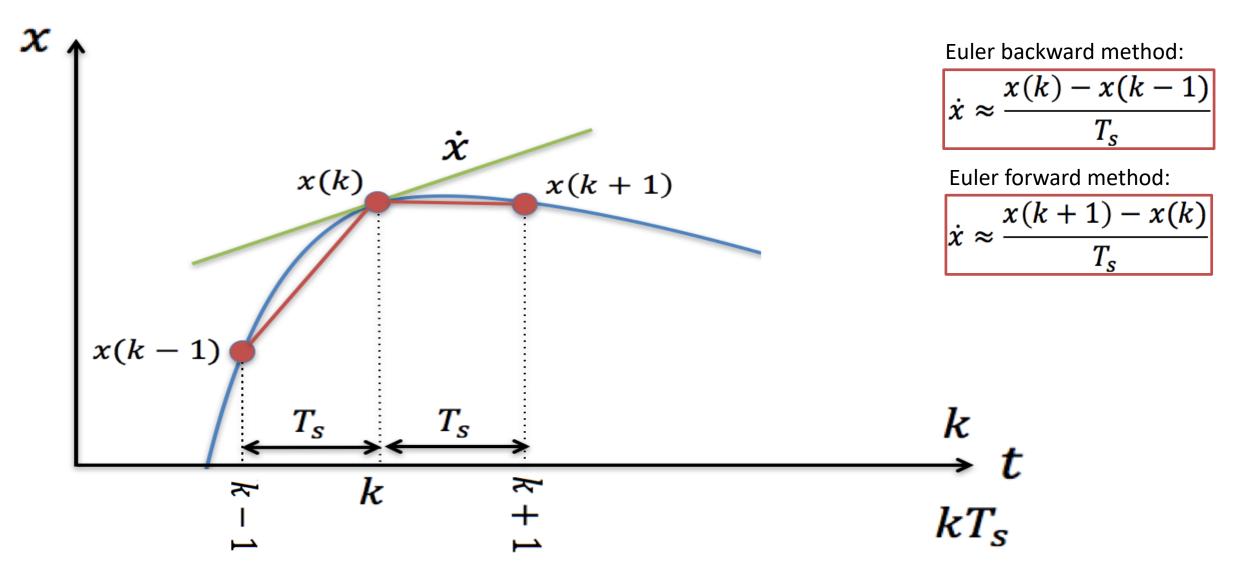
- When dealing with computer simulations, we need to create a discrete version of our system.
- This means we need to make a discrete version of our continuous differential equations.
- Actually, the built-in ODE solvers in MATLAB use different discretization methods
- Interpolation, Curve Fitting, etc. is also based on a set of discrete values (data points or measurements)
- The same with Numerical Differentiation and Numerical Integration



Discrete values

• etc.

Discrete Approximation of the time derivative



Discretization Methods

Euler backward method:

$$\dot{x} \approx \frac{x(k) - x(k-1)}{T_s}$$

Euler forward method:
$$\dot{x} \approx \frac{x(k+1) - x(k)}{T_s}$$

Simpler to use!

Where T_s is the sampling time, and x(k + 1), x(k) and x(k - 1) are discrete values.

Other methods are Zero Order Hold (ZOH), Tustin's method, etc.

Different Discrete Symbols and meanings

Previous Value:
$$x(k-1) = x_{k-1} = x(t_{k-1})$$

Present Value:
$$x(k) = x_k = x(t_k)$$

<u>Next</u> (Future) Value: $x(k+1) = x_{k+1} = x(t_{k+1})$

Note! Different Notation is used in different litterature!

Example:

Discrete Systems

Given the following continuous system (differential equation):

$$\dot{x} = -ax + bu \qquad x(k+1) = ?$$

Where *u* may be the Control Signal from e.g., a PID Controller

We will use the Euler forward method :

$$\dot{x} \approx \frac{x(k+1) - x(k)}{T_s}$$

Students: Find the discrete differential equation (pen and paper) and then simulate the system in MATLAB, i.e., plot the Step Response of the system. Tip! Use a for loop

Set a = 0.25 and b = 2

Solution:

Discrete Systems

Given the following continuous system:

 $\dot{x} = -ax + bu$

$$x(k+1) = ?$$

We will use the Euler forward method :

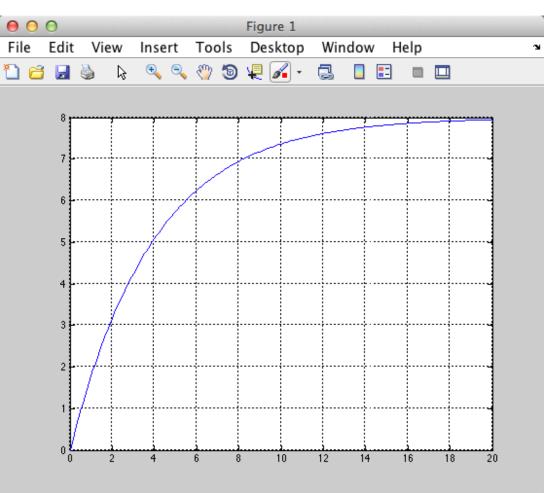
MATLAB Code:

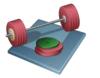
Solution:

```
% Simulation of discrete model
clear, clc, close all
% Model Parameters
a = 0.25; b = 2;
% Simulation Parameters
Ts = 0.1; %s
Tstop = 20; %s
uk = 1; % Step in u
x(1) = 0; % Initial value
% Simulation
for k=1:(Tstop/Ts)
    x(k+1) = (1-a*Ts).*x(k) + Ts*b*uk;
```

end

```
% Plot the Simulation Results
k=0:Ts:Tstop;
plot(k, x)
grid on
```





Students: An alternative solution is to use the built-in function **c2d()** (convert from continous to discrete). Try this function and see if you get the same results.

Solution:

Discrete Systems

 $\Theta \Theta \Theta$

Figure 1

25

30

35

Students: Try this example

File Edit View Insert Tools Desktop Window Help

MATLAB Code:

```
% Find Discrete model
                                                                           Step Response
clear, clc, close all
% Model Parameters
a = 0.25;
b = 2;
                                                             Amplitude
Ts = 0.1; %s
% State-space model
A = [-a];
 = [b];
В
                                                                           15
                                                                       10
C = [1];
                                                                           Time (seconds)
D = [0];
model = ss(A, B, C, D)
                                                            Euler Forward method
model discrete = c2d(model, Ts, 'forward')
step(model discrete)
grid on
```


Whats next? Learning by Doing!

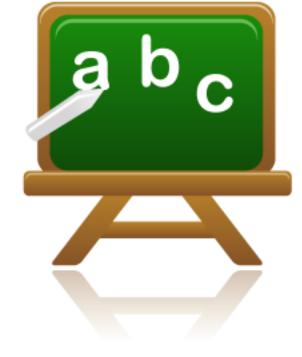
Modelling, Simulation and Control in MATLAB

Hans-Petter Halvorsen

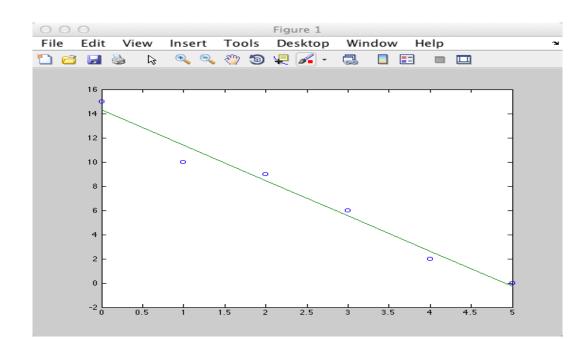
Self-paced Tutorials with lots of Exercises and Video resources

Do as many Exercises as possible! The only way to learn MATLAB is by doing Exercises and hands-on Coding!!!

https://www.halvorsen.blog



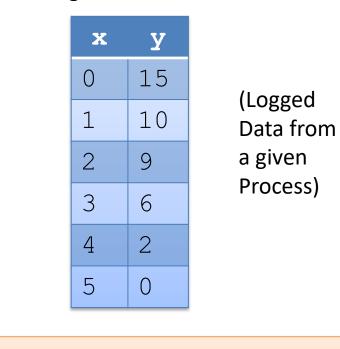
- Interpolation
- Curve Fitting

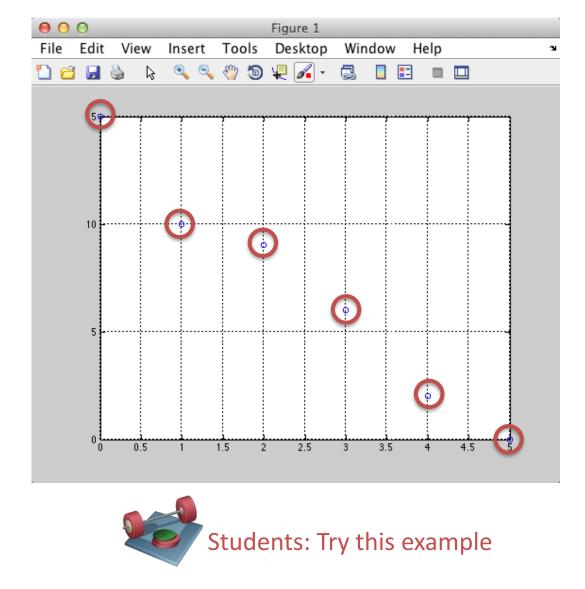


Example

Given the following Data Points:

Interpolation





x=0:5; y=[15, 10, 9, 6, 2, 0]; plot(x,y,'o') grid

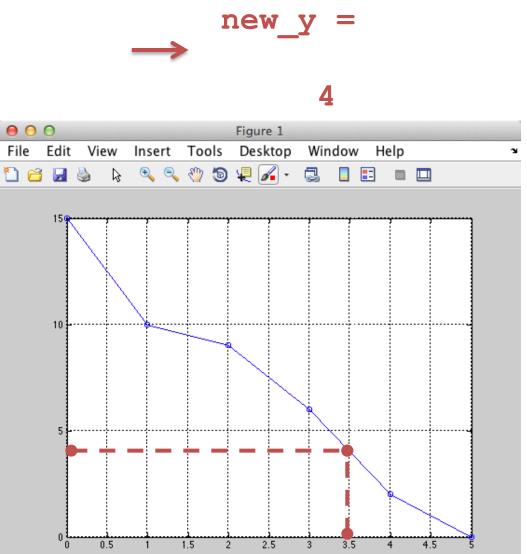
Problem: We want to find the interpolated value for, e.g., x = 3.5

Interpolation

We can use one of the built-in Interpolation functions in MATLAB:

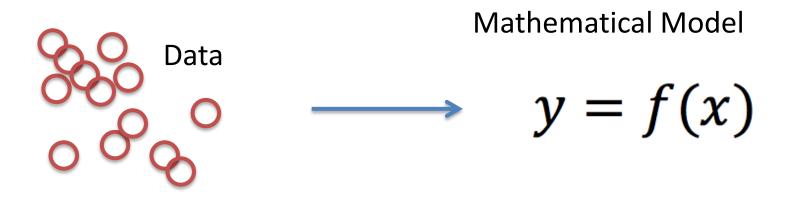
```
x=0:5;
y=[15, 10, 9, 6, 2, 0];
plot(x,y,'-o')
grid on
new_x=3.5;
new_y = interp1(x,y,new_x)
```

MATLAB gives us the answer 4. From the plot we see this is a good guess:



Curve Fitting

- In the previous section we found interpolated points, i.e., we found values between the measured points using the interpolation technique.
- It would be more convenient to model the data as a mathematical function y = f(x).
- Then we can easily calculate any data we want based on this model.

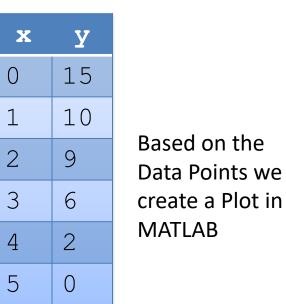


Example:

Curve Fitting

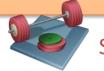
Linear Regression



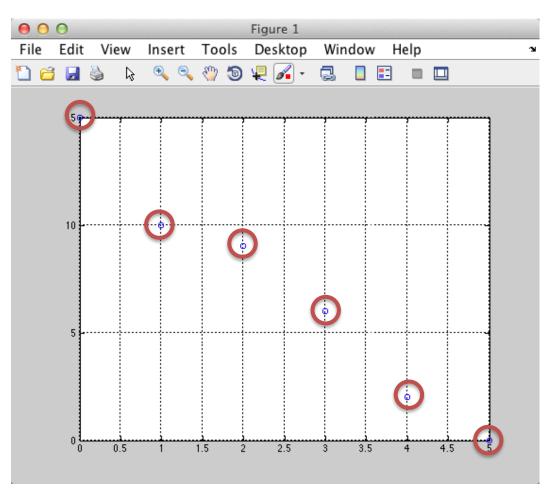


x=0:5; y=[15, 10, 9, 6, 2, 0];

plot(x,y ,'o')
grid



Students: Try this example



Based on the plot we assume a linear relationship:

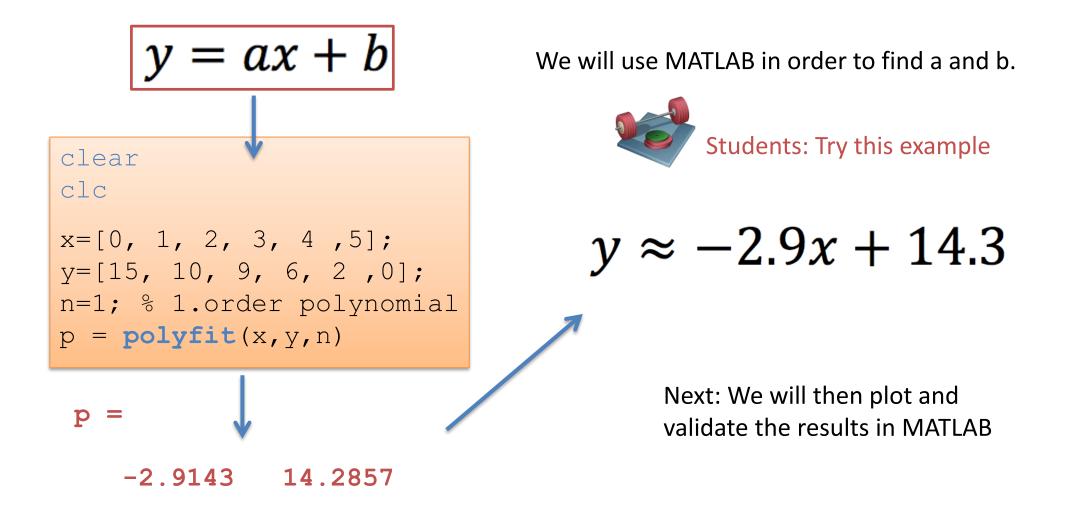
$$y = ax + b$$

We will use MATLAB in order to find a and b.

Example

Curve Fitting Linear Regression

Based on the plot we assume a linear relationship:



Example

Curve Fitting

$$y \approx -2.9x + 14.3$$

clear clc

close all

```
x=[0, 1, 2, 3, 4, 5];
y=[15, 10, 9, 6, 2, 0];
n=1; % 1.order polynomial
p=polyfit(x,y,n);
```

a=p(1); b=p(2);

```
ymodel = a*x+b;
```

```
plot(x,y,'o',x,ymodel)
```

We will plot and validate the results in MATLAB

Linear Regression

0

1

2

3

5

15

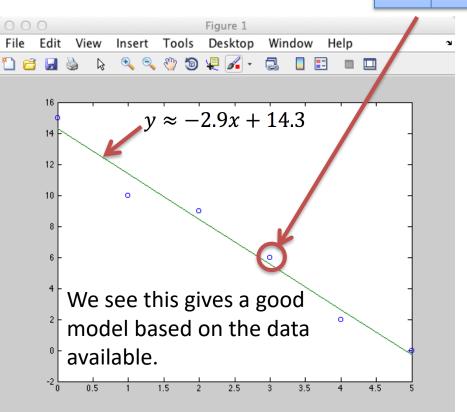
10

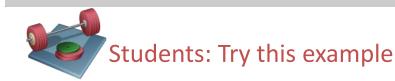
9

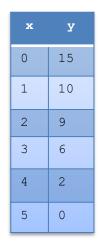
6

2

0







Curve Fitting Linear Regression

Problem: We want to find the interpolated value for, e.g., *x=3.5*

3 ways to do this:

- Use the interp1 function (shown earlier)
- Implement y=-2.9+14.3 and calculate y(3.5)
- Use the polyval function

```
... (see previus examples)
new_x=3.5;
new_y = interp1(x,y,new_x)
new_y = a*new_x + b
new_y = polyval(p, new_x)
```


Curve Fitting

Polynomial Regression

$$y(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$$

1.order:
$$y(x) = ax + b$$

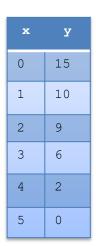
2.order: $y(x) = ax^2 + bx + c$
 $p = polyfit(x, y, 1)$

B.order:
$$y(x) = ax^3 + bx^2 + cx + d$$

 $p = polyfit(x, y, 3)$

etc.

Students: Try to find models based on the given data using different orders (1. order – 6. order models). Plot the different models in a subplot for easy comparison.



Curve Fitting

```
clear
```

clc

end

close all

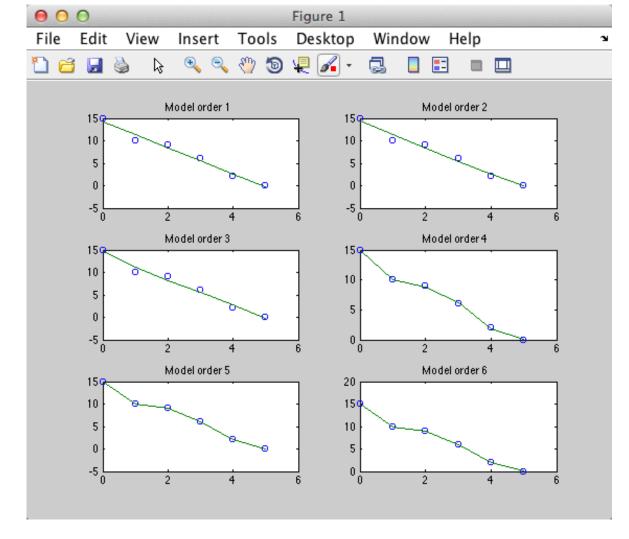
```
x=[0, 1, 2, 3, 4, 5];
y=[15, 10, 9, 6, 2, 0];
```

```
for n=1:6 % n = model order
```

```
p = polyfit(x,y,n)
```

```
ymodel = polyval(p,x);
```

```
subplot(3,2,n)
plot(x,y,'o',x,ymodel)
title(sprintf('Model order %d', n));
```



- As expected, the higher order models match the data better and better.
- Note! The fifth order model matches exactly because there were only six data points available.
- n > 5 makes no sense because we have only 6 data points

Whats next? Learning by Doing!

Modelling, Simulation and Control in MATLAB

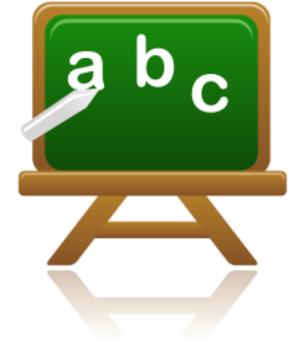
Hans-Petter Halvorsen

Self-paced Tutorials with lots of Exercises and Video resources

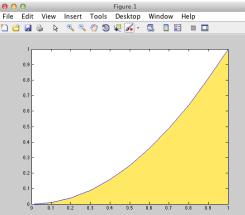
Do as many Exercises as possible! The only way to learn MATLAB is by doing Exercises and hands-on Coding!!!

https://www.halvorsen.blog

Lesson 4



- Numerical Differentiation
- Numerical Integration



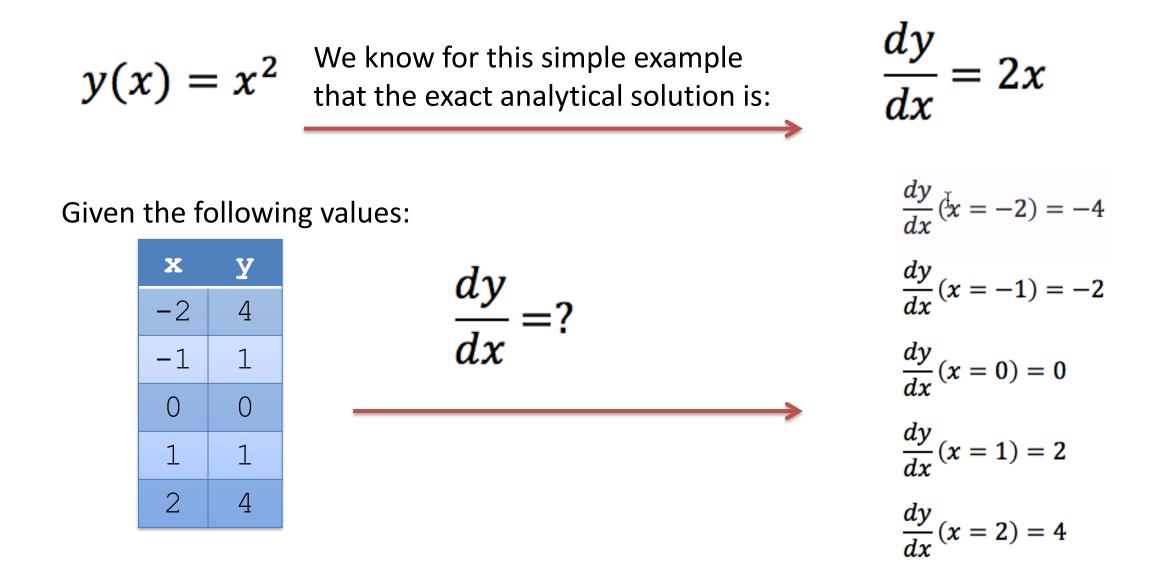
Numerical Differentiation f(x+h)secant $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ f(x)x+hXA numerical approach to the derivative of a function y=f(x) is:

$$\frac{dy}{dx} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

Note! We will use MATLAB in order to find the <u>numeric</u> solution – not the analytic solution

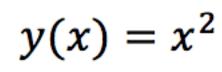
Numerical Differentiation

Example:



Numerical Differentiation

dy



MATLAB Code:

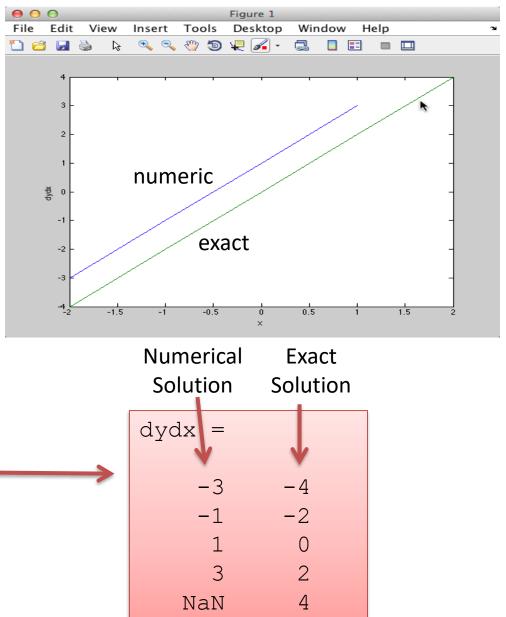
x=-2:2; y=x.^2;

% Exact Solution
dydx_exact = 2*x;

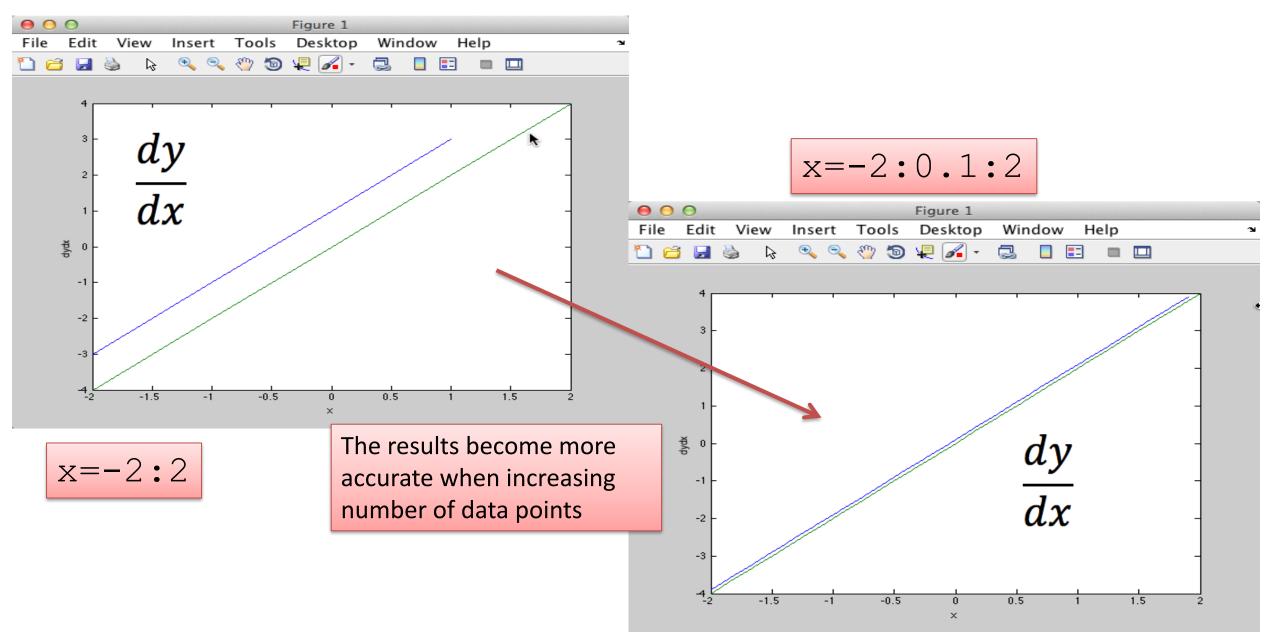
```
% Numerical Solution
dydx num = diff(y)./diff(x);
```

```
% Compare the Results
dydx = [[dydx_num, NaN]', dydx_exact']
plot(x,[dydx_num, NaN]', x, dydx_exact')
```


Students: Try this example. Try also to increase number of data points, x=-2:0.1:2



Numerical Differentiation

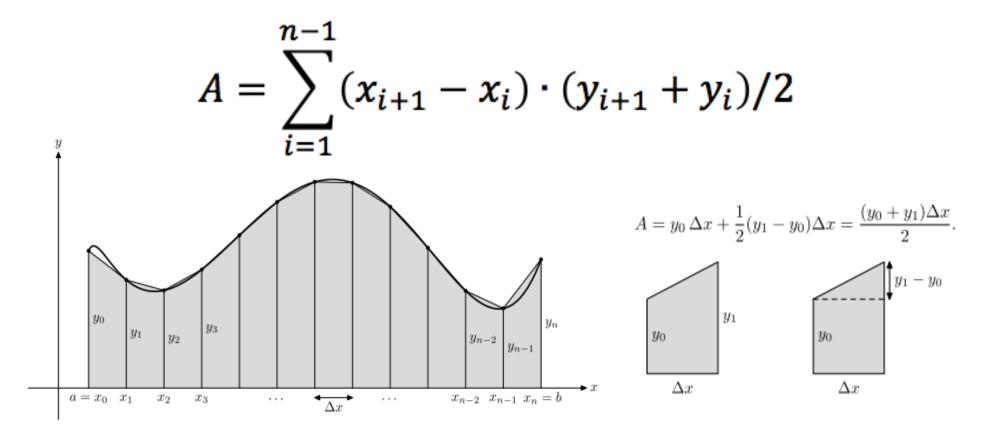


$$\int_{a}^{b} f(x) dx$$

Numerical Integration

An integral can be seen as the area under a curve.

Given y=f(x) the approximation of the Area (A) under the curve can be found dividing the area up into rectangles and then summing the contribution from all the rectangles (trapezoid rule):



Numerical Integration

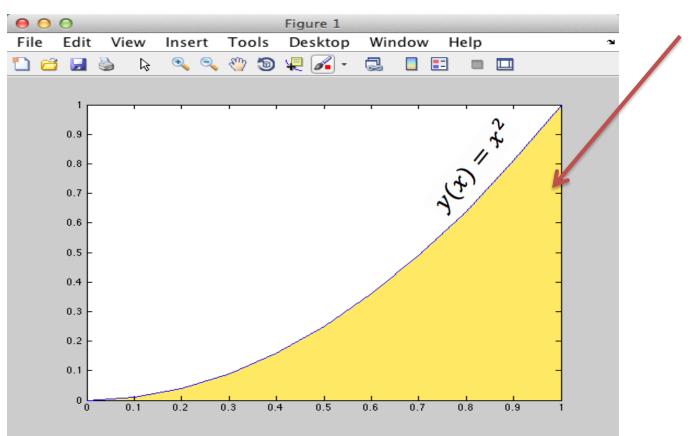
We know that the exact solution is:

$$y(x) = x^2 \rightarrow$$

$$\int_a^b y(x)\,dx =?$$

$$\int_{0}^{1} x^{2} dx = \frac{1}{3} \approx 0.3333$$

r a



We use MATLAB (trapezoid rule):

x=0:0.1:1; y=x.^2; plot(x,y)

JO

% Calculate the Integral: avg_y=y(1:length(x)-1)+diff(y)/2; A=sum(diff(x).*avg_y)

$$A = 0.3350$$

3

Students: Try this example

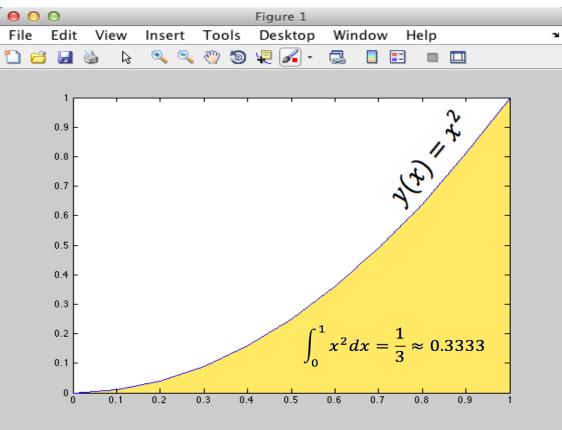
Numerical Integration

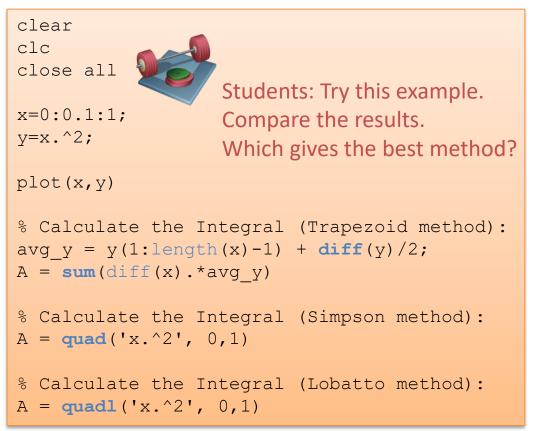
We know that the exact solution is:

 $y(x)=x^2$

 $y(x) dx =? \rightarrow$

In MATLAB we have several built-in functions we can use for numerical integration:





Whats next? Learning by Doing!

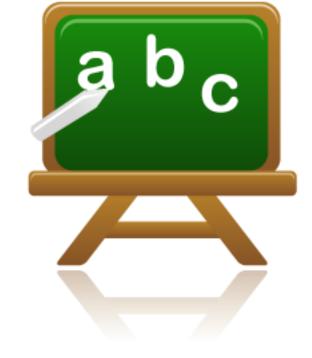
Modelling, Simulation and Control in MATLAB

Hans-Petter Halvorsen

Self-paced Tutorials with lots of Exercises and Video resources

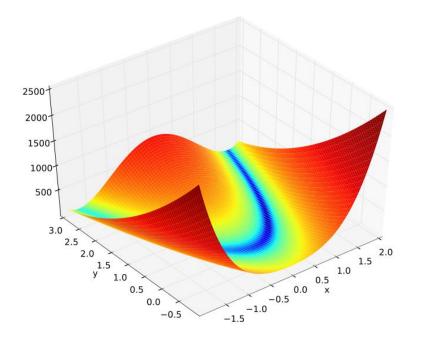
Do as many Exercises as possible! The only way to learn MATLAB is by doing Exercises and hands-on Coding!!!

https://www.halvorsen.blog



Lesson 5

Optimization



Optimization

Optimization is important in modelling, control and simulation applications. Optimization is based on finding the minimum of a given criteria function.

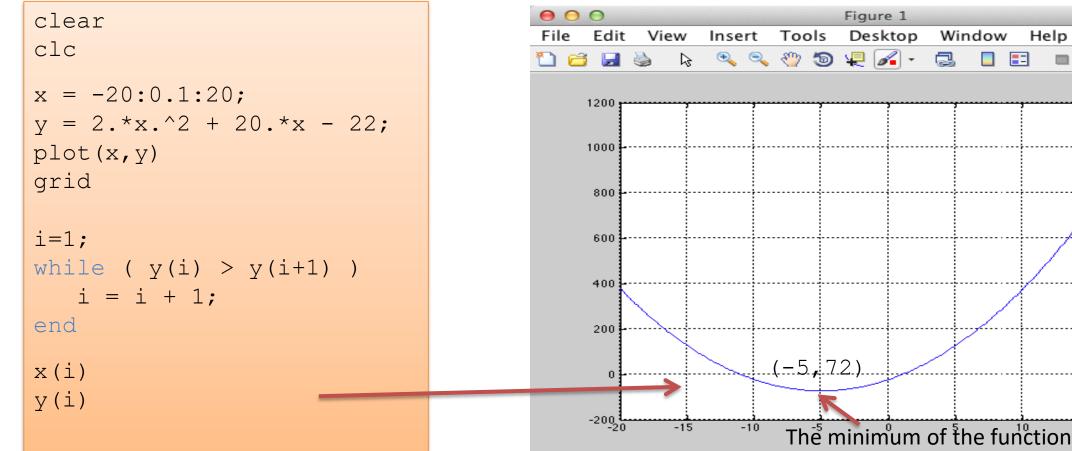
Example:
$$y(x) = 2x^2 + 20x - 22$$

Help

15

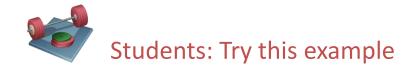
20

We want to find for what value of x the function has its minimum value



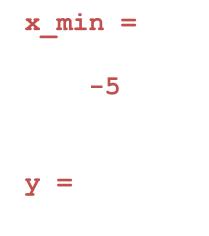
Optimization

$$y(x) = 2x^2 + 20x - 22$$



function f = mysimplefunc(x	K)
-----------------------------	---	---

 $f = 2 \times x^2 + 20 \times x - 22;$



-72

We got the same results as previous slide

Note! if we have more than 1 variable, we have to use e.g., the fminsearch function

clear clc close all
<pre>x = -20:1:20; f = mysimplefunc(x); plot(x, f) grid</pre>
<pre>x_min = fminbnd(@mysimplefunc, -20, 20)</pre>
y = mysimplefunc (x_min)

Whats next? Learning by Doing!

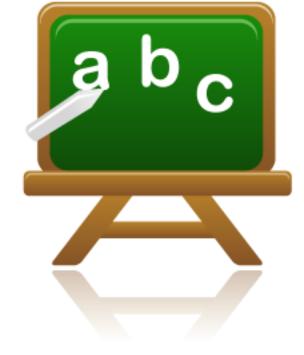
Modelling, Simulation and Control in MATLAB

Hans-Petter Halvorsen

Self-paced Tutorials with lots of Exercises and Video resources

Do as many Exercises as possible! The only way to learn MATLAB is by doing Exercises and hands-on Coding!!!

https://www.halvorsen.blog

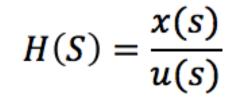


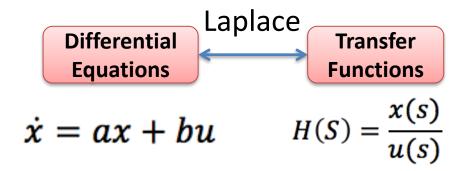
- Transfer Functions
- State-space models

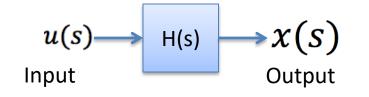
$$H(s) = \frac{y(s)}{u(s)} = \frac{2}{s^2 + 4s + 3}$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ B \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

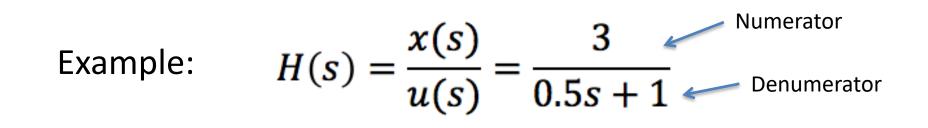
Transfer functions







A Transfer function is the ratio between the input and the output of a dynamic system when all the others input variables and initial conditions is set to zero



Transfer functions

1.order Transfer function with Time Delay:

1.order Transfer function: $=\frac{K}{Ts+1}e^{-\tau s}$ H(s)Κ H(s) $\overline{Ts+1}$ 100% KUStep Response: 63% $u(s) = \frac{U}{s}$ 0% 0 ò

Transfer functions

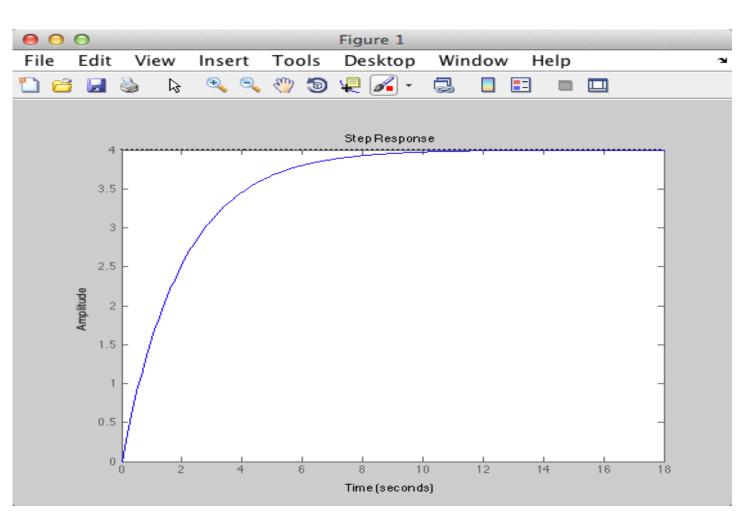
$$H(s) = \frac{x(s)}{u(s)} = \frac{4}{2s+1}$$

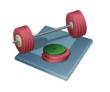
MATLAB:

clear clc close all

```
% Transfer Function
num = [4];
den = [2, 1];
H = tf(num, den)
```

% Step Response **step**(H)





Transfer functions

2.order Transfer function:

$$H(s) = \frac{K}{as^2 + bs + c} = \frac{K\omega_0^2}{s^2 + 2\zeta\omega_0 + \omega_0^2} = \frac{K}{\left(\frac{s}{\omega_0}\right)^2 + 2\zeta\frac{s}{\omega_0} + 1}$$

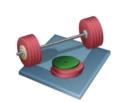
Example:
$$H(s) = \frac{y(s)}{u(s)} = \frac{2}{s^2 + 4s + 3}$$

MATLAB:

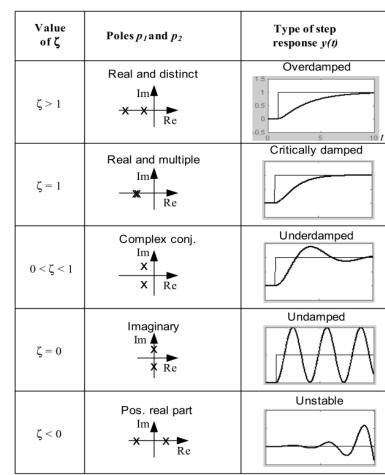
clear clc close all

% Transfer Function
num = [2];
den = [1, 4, 3];
H = tf(num, den)

% Step Response step(H)



Students: Try this example. Try with different values for *K*, *a*, *b* and *c*.



State-space models

A set with linear differential equations:

$$\dot{x}_1 = a_{11}x_1 + a_{21}x_2 + \dots + a_{n1}x_n + b_{11}u_1 + b_{21}u_2 + \dots + b_{n1}u_n$$

$$\vdots$$

$$\dot{x}_n = a_{1m}x_1 + a_{2m}x_2 + \dots + a_{nm}x_n + b_{1m}u_1 + b_{2m}u_2 + \dots + b_{n1}u_n$$

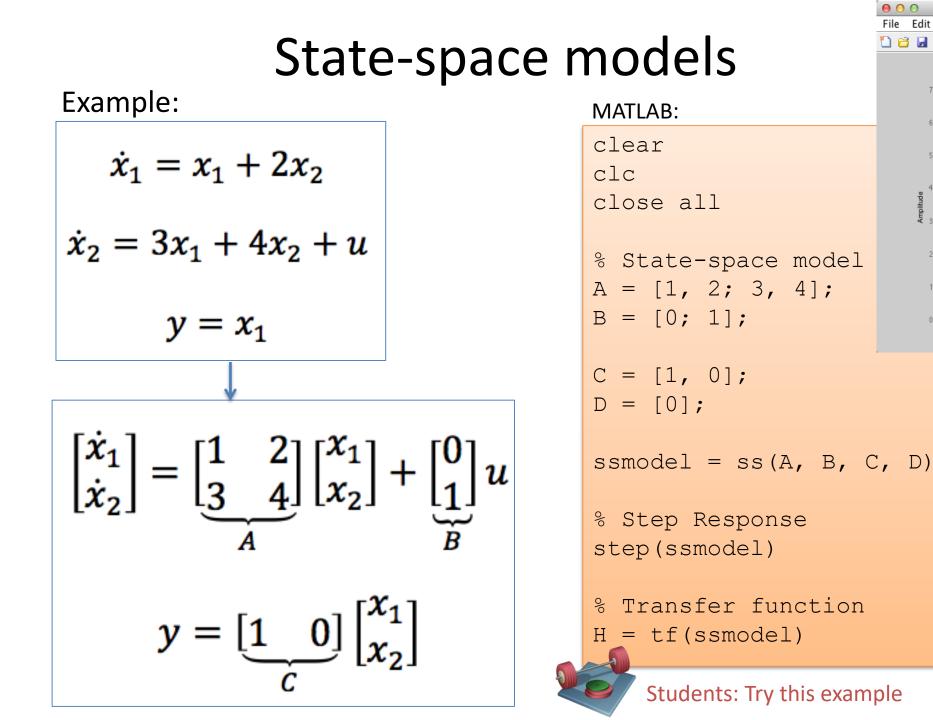
$$\vdots$$

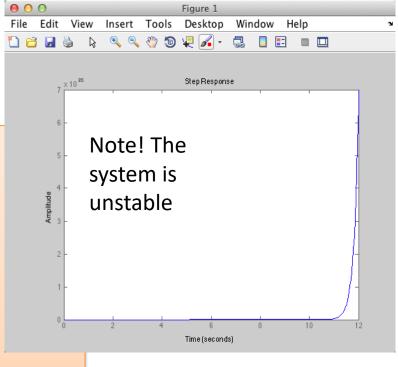
Can be structured like this:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \vdots \\ \dot{x}_n \\ \dot{x} \end{bmatrix} = \begin{bmatrix} a_{11} & \cdots & a_{n1} \\ \vdots & \ddots & \vdots \\ a_{1m} & \cdots & a_{nm} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \\ \dot{x} \end{bmatrix} + \begin{bmatrix} b_{11} & \cdots & b_{n1} \\ \vdots & \ddots & \vdots \\ b_{1m} & \cdots & b_{nm} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ b_{1m} & \cdots & b_{nm} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} \\ \underbrace{u_n} \\ \underbrace{u_n$$

Which can be stated on the following compact form:

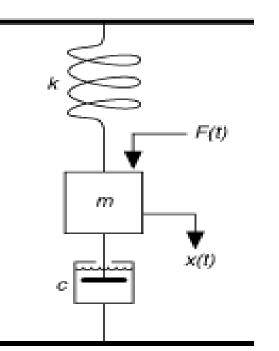
$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

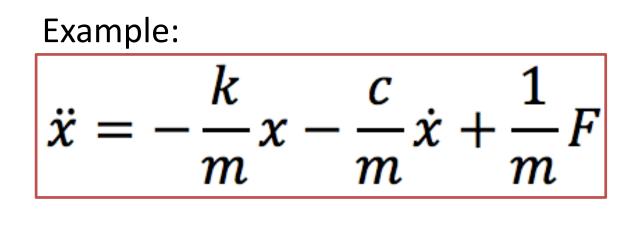




State-space models

Mass-Spring-Damper System





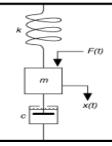
x – position, \dot{x} – speed/velocity, \ddot{x} – acceleration

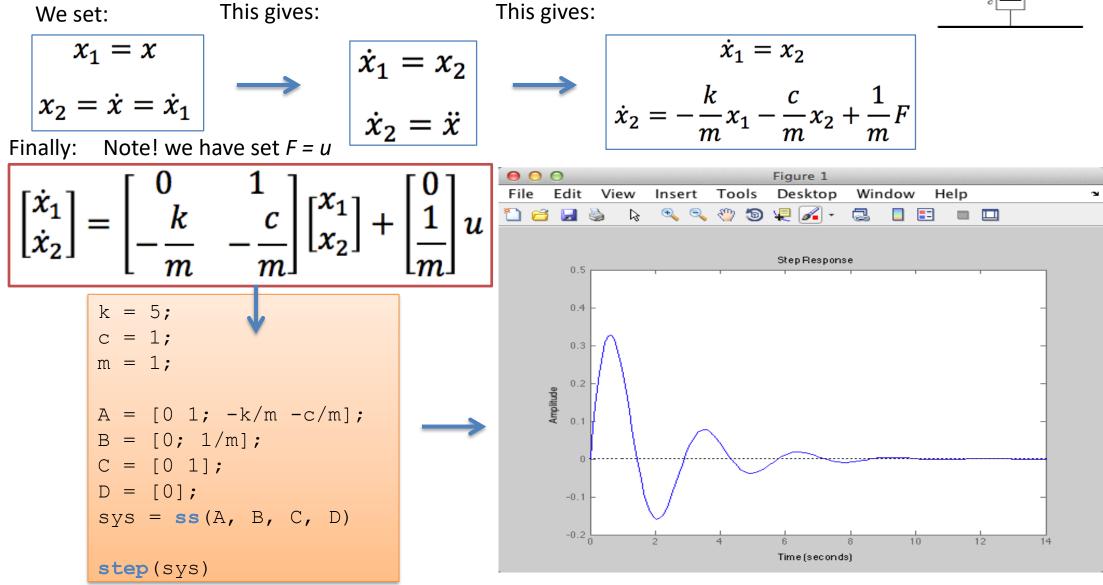
Students: Find the State-space model and find the step response in MATLAB. Try with different values for k, m, c and F. Discuss the results

c - damping constant, m - mass, k - spring constant, F - force

State-space models

Mass-Spring-Damper System





Whats next? Learning by Doing!

Modelling, Simulation and Control in MATLAB

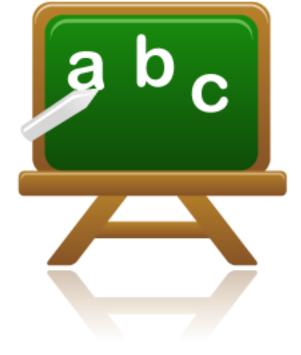
Hans-Petter Halvorsen

Self-paced Tutorials with lots of Exercises and Video resources

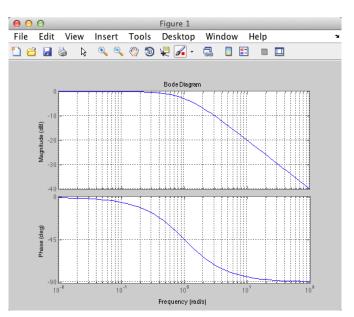
Do as many Exercises as possible! The only way to learn MATLAB is by doing Exercises and hands-on Coding!!!

https://www.halvorsen.blog

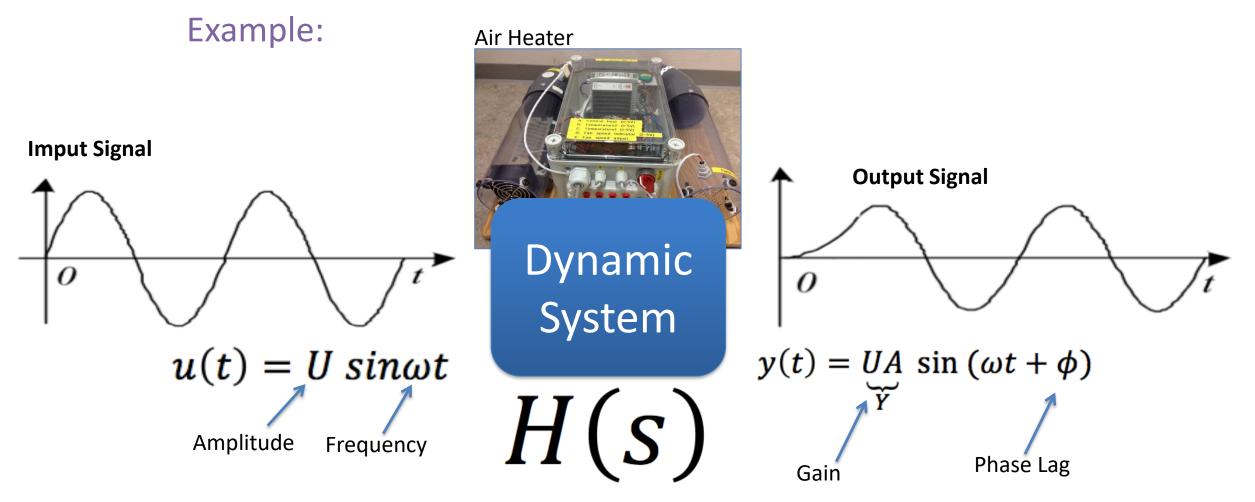
Lesson 7



• Frequency Response

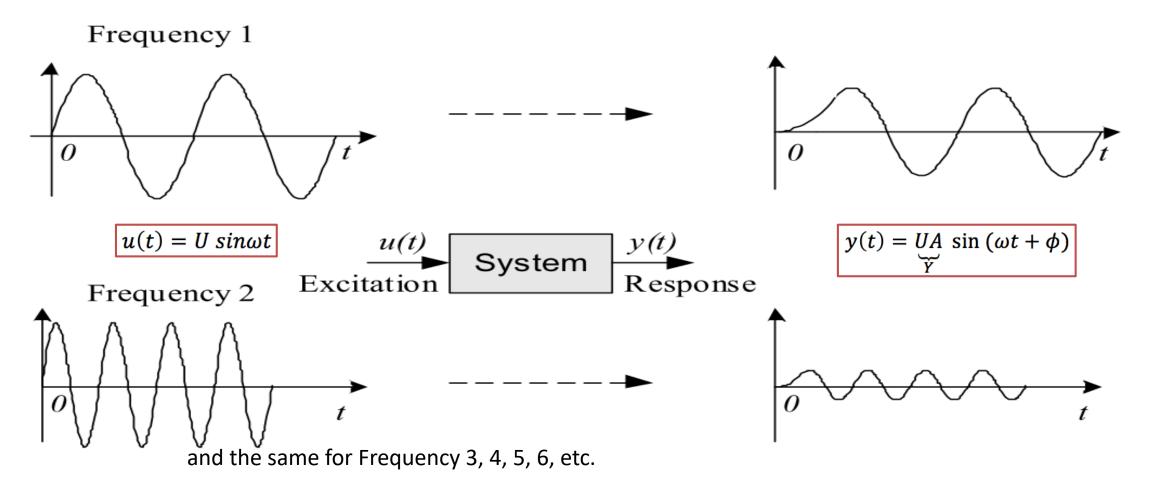


Frequency Response



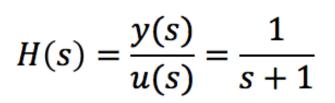
The frequency response of a system expresses how a sinusoidal signal of a given frequency on the system input is transferred through the system.

Frequency Response - Definition



- The frequency response of a system is defined as the **steady-state** response of the system to a **sinusoidal** input signal.
- When the system is in steady-state, it differs from the input signal only in amplitude/gain (A) ("forsterkning") and phase lag (φ) ("faseforskyvning").

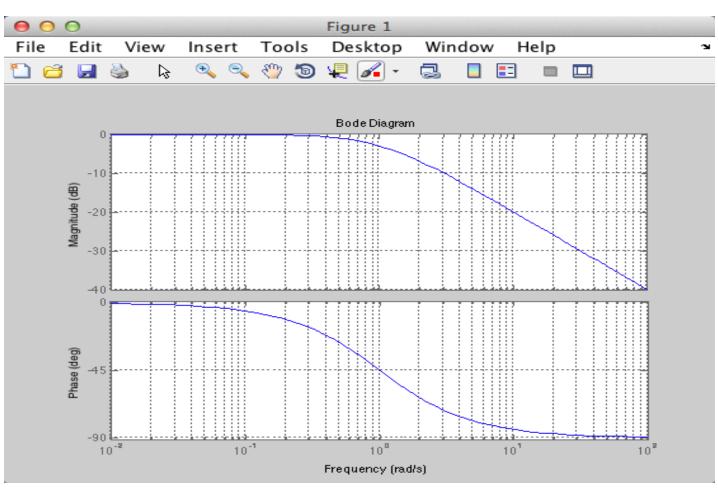
Frequency Response



clear clc close all

```
% Define Transfer function
num=[1];
den=[1, 1];
H = tf(num, den)
```

% Frequency Response
bode(H);
grid on



Students: Try this Example

The frequency response is an important tool for analysis and design of signal filters and for analysis and design of control systems.

Whats next? Learning by Doing!

Modelling, Simulation and Control in MATLAB

Hans-Petter Halvorsen

Self-paced Tutorials with lots of Exercises and Video resources

Do as many Exercises as possible! The only way to learn MATLAB is by doing Exercises and hands-on Coding!!!

https://www.halvorsen.blog

Hans-Petter Halvorsen

University of South-Eastern Norway

www.usn.no

E-mail: <u>hans.p.halvorsen@usn.no</u>

Web: https://www.halvorsen.blog

